Инфоурок Информатика Другие методич. материалыКонспект урока на тему «Устройства отображения информации. Дисплей (монитор), видеокарта»

Конспект урока на тему «Устройства отображения информации. Дисплей (монитор), видеокарта»

Скачать материал

Выберите документ из архива для просмотра:

Выбранный для просмотра документ дисплей монитор.docx

Автор:
Усольцева Эльвира Мирза-Агаевна
Преподаватель информатики и ИКТ
ГОУ НПО «КПУ» с отделением КШИ
г. Качканар Свердловской области
e-mail:
написать автору

 

Конспект урока на тему
Устройства отображения информации.
Дисплей (монитор), видеокарта




Название: ДИСПЛЕИ, МОНИТОР.

Дисплей (анг. display — показывать) относится к основным устройствам любого ПК, без которого невозможна эффективная работа. Можно, конечно, выводить всю необходимую пользователю информацию о работе и состоянии системы на печатающее устройство (так оно и было в первых моделях ЭВМ), но это длительный и не очень наглядный процесс. Наиболее важная отличительная особенность современных компьютеров заключается в возможности почти мгновенного взаимодействия (работа в режиме реального времени) между системой и пользователем. В большинстве систем это взаимодействие осуществляется при помощи клавиатуры (и/или манипуляторов) и экрана дисплея. В процессе работы на экране дисплея отображаются как вводимые пользователем команды и данные, так и реакция системы на них.

Дисплей (монитор)Назначение. Устройство визуального отображения информации или, более точно, устройство отображения информации, находящейся в оперативной памяти, позволяющее обеспечить взаимодействие пользователя с аппаратным и программным обеспечением компьютера. Дисплей — это важнейший компонент пользовательского интерфейса.

Исторически сложилось так, что устройство отображения информации называют и дисплеем, и монитором (видеомонитором), и терминалом (видеотерминалом). Эти термины часто используются как синонимы, хотя каждое конкретное название используется, чтобы подчеркнуть, высветить требуемую особенность применения устройства.

Дисплей — это общее название устройства, показывающего, отображающего информацию. Под управлением ЭВМ в качестве дисплея может работать даже бытовой телевизор. Казалось бы, проблема решена — есть устройство, позволяющее быстро отображать состояние системы. Однако оказалось, что при продолжительной работе с ним пользователь быстро устаёт: это устройство существенно влияет на работоспособность, эмоциональный настрой, самочувствие и способно даже привести к потере зрения. Возникла необходимость оптимизировать характеристики экрана, добиться более чёткого и устойчивого изображения, чтобы избежать излишней утомляемости. Были разработаны специализированные устройства — мониторы, контролирующие процесс отображения (англ. monitor — староста в классе, наблюдающий за порядком; корректирующее или управляющее устройство).

Клавиатуру и монитор можно связать с компьютером как отдельные устройства или соединить их в терминал, связанный с компьютером как единое целое. Обычно терминалы используются в системах коллективного пользования, когда с одним и тем же центральным компьютером одновременно работают много пользователей. Это называется работой в режиме удаленного доступа.

Принцип работы. Так как информация бывает разной, то используются разнообразные устройства отображения информации. Краткая классификация дисплеев приведена на рисунке.

Отличие алфавитно-цифровых (иногда говорят «знакоместных») и графических дисплеев состоит в том, что:

·         первые способны воспроизводить только ограниченный набор символов, причём символы могут выводиться только в определенные позиции экрана (чаще всего на экран можно вывести 24 или 25 строк по 40 или 80 символов в строке);

·         вторые отображают как графическую, так и текстовую информацию, при этом экран разбит на множество точек (пикселей), каждая из которых может иметь тот или иной цвет. Из этих светящихся точек и формируется изображение.

Виды дисплеев

Монохромные устройства способны воспроизводить информацию только в каком-либо одном цвете, возможно, с различными оттенками (градациями яркости). Встречаются чёрно-белые экраны, а также зелено-желтые. Многие специалисты признают, что для длительной работы за компьютером лучше использовать монохромный дисплей: глаза при этом устают намного меньше.

Цветные дисплеи обеспечивают отображение информации в нескольких оттенках цвета (от 16 оттенков до более чем 16 млн). Фактически, современные дисплеи могут отображать столько оттенков, сколько позволяет видеокарта, память которой хранит информацию о цветах точек экрана.

Как образуются цвета на экране современного дисплея?

Изображение состоит из отдельных зёрен экрана. Каждое зерно экрана состоит из трех пятнышек люминофора, одно из которых может светиться красным цветом (англ. Red), второе — зелёным (англ. Green), третье — синим (англ. Blue); каждое из этих пятнышек может и не светиться (быть темным). Комбинация красного и зелёного цветов дает жёлтый цвет, синего и зелёного — голубой, синего и красного — пурпурный, комбинация всех трёх цветов одной яркости дает белый цвет, отсутствие всех цветов дает чёрный цвет. Любой оттенок, различимый человеческим глазом, можно получить, «смешивая» эти три цвета в той или иной пропорции. Как такового смешения цветов не происходит — физически каждое пятнышко располагается на определенном месте. Особенность зрения человека состоит в том, что на некотором расстоянии от экрана он воспринимает близко расположенные цветовые точки различной яркости как единый элемент — пиксель. Цвет пикселя является результатом смешения в восприятии основных составляющих его цветов. Такая модель цветообразования называется RGB-моделью.

Наиболее распространены дисплеи на электронно-лучевой трубке (ЭЛТ). Большинство персональных компьютеров оснащено в основном ЭЛТ-дисплеями. Они работают подобно бытовому телевизору.

Под воздействием электрических полей в «электронной пушке» разгоняется поток электронов. Далее при помощи электромагнитных полей пучок отклоняется в нужную сторону. Затем, проходя через апертурную решётку, этот поток фокусируется, доходит до экрана и заставляет светиться маленькое пятнышко люминофора (зерно экрана) с яркостью, пропорциональной интенсивности пучка. Так работают монохромные устройства. В цветных мониторах зерно экрана составляют три пятнышка люминофора разного цвета (красного, зелёного и синего) и потоки электронов посылаются тремя «пушками», причём электронный луч для каждого цвета должен попадать на свой люминофор.

Преимущества: современные ЭЛТ-дисплеи имеют высокое качество изображения, достаточно дёшевы и надёжны.

Недостатки: такие дисплеи достаточно громоздки, потребляют много энергии, имеют более высокий уровень излучения, чем дисплеи других типов.

Жидкокристаллические дисплеи (Liquid-Crystal Display), или LCD-дисплеи. Их действие основано на эффекте потери жидкими кристаллами своей прозрачности при пропускании через них электрического тока. Применяются преимущественно в портативных компьютерах (notebook).

Преимущества: жидкокристаллические дисплеи не создают вредного для здоровья пользователя излучения, наиболее экономичны в потреблении энергии, обеспечивают хорошее качество изображения.

Недостатки: такие дисплеи достаточно дороги, небольшие (14") размеры экрана; если смотреть на экран сбоку, то почти ничего нельзя разглядеть.

Газо-плазменные дисплеи (plasma displays). Действие основано на свечении газа при пропускании через него электрического тока. Схема такова: имеются два листа, между ними инертный газ; один из листов прозрачный, а на втором расположены электроды, на которые подаётся напряжение. Обычно газо-плазменные индикаторы состоят из нескольких подобных элементарных ячеек, число точек в каждой из которых подобрано наиболее оптимальным образом для отображения одиночных символов. (Выглядит это примерно так же, как часы в метро.) Эти дисплеи применяются в основном в специализированных ЭВМ для отображения строк символов.

Светодиодные матрицы (LED-дисплеи). Обычно применяются во встроенных ЭВМ (используемых в автоматизированных линиях на промышленном производстве, в робототехнике и так далее) для отображения небольших объёмов текстовой информации.

Перспективная разработка — панели на основе светящихся пластмасс (LEP-панели). Чем хороши LEP-элементы? Во-первых, они светятся сами, что снижает энергопотребление. Кусочки пластика, излучающего красный, синий, зелёный свет, наносятся на гибкую пластиковую основу точно так же, как люминофор на поверхность кинескопа, к ним подводятся проводники — экран готов. Во-вторых, такие панели имеют небольшой вес при больших размерах. Например, гибкий пластиковый экран размером 1 м2 может весить несколько десятков грамм. В-третьих, LEP-элементы надёжны.

На протяжении многих лет механизмы (способы) связи между компьютером и дисплеем непрерывно видоизменялись, всё более совершенствуясь. Для подключения дисплея к компьютеру необходима соответствующая карта — видеоадаптер.

Основные пользовательские характеристики:

·         Размер экрана по диагонали. Измеряется в дюймах. Имеются 14", 15", 17", 21" и др. мониторы.Следует помнить, что размер изображения, как правило, на дюйм меньше размера кинескопа. Считается, что 15" монитор отлично подходит для работы в домашних условиях; 17" монитор необходим для профессиональной работы с графикой; размеры экрана, большие 21" для персонального монитора на сегодняшний день не очень удобны для пользования, так как экран тяжело окинуть взглядом.

·         Размер зерна экрана — расстояние в миллиметрах между двумя соседними люминофорами одного цвета. Меньший размер зерна соответствует более резкой и контрастной картинке, создавая общее впечатление чистоты цвета и чёткого контура изображения. У мониторов разного типа размер зерна экрана может находиться в пределах от 0,18 до 0,50 мм. Наиболее оптимальными для восприятия считаются мониторы с зерном экрана от 0,24 до 0,28 мм.

·         Разрешающая способность — число пикселей (точек экрана) по горизонтали и вертикали. Эта характеристика определяет контрастность изображения. Она зависит от размера экрана и размера зерна экрана, но может изменяться (в определённых пределах) с помощью программной настройки.

В таблице приведены некоторые оптимальные с точки зрения эргономики разрешающие способности при различных размерах кинескопа и зерна экрана.

Взаимосвязь размера экрана, размера зерна, разрешения экрана

Размер экрана

Размер зерна экрана

Разрешение 640x480

Разрешение 800x600

Разрешение 1024x768

Разрешение 1280x1024

Разрешение 1600x1200

14"

0,35

0,28

0,22

0,18

0,16

17"

0,43

0,34

0,27

0,22

0,19

21"

0,50

0,40

0,31

0,25

0,22

 

Число передаваемых цветов. Начиная со стандарта VGA, любой монитор способен отображать столько цветов, сколько обеспечивает видеокарта, вернее, объём памяти видеокарты.

Пример. Монитор вашего компьютера имеет размер 14". По паспортным данным вы определили, что размер зерна экрана равен 0,24. Объём памяти видеокарты — 512 Кб. Как определить, какую разрешающую способность и какую цветность вы можете установить на своём мониторе?

Определим, какое максимальное разрешение возможно. Длина диагонали экрана 14 дюймов к 14 • 2,54 • 10 мм = 355,6 мм. Длина стороны экрана: диагональ /√ 2 ≈ 250,42 мм.

Максимальное количество точек по одной из размерностей определяется как отношение длины стороны экрана к размеру зерна и составляет 250,42/0,24 ≈ 1044. Таким образом, на вашем экране можно установить максимальную разрешающую способность 1024x768. Конечно же, можно установить разрешение и 800x600, и 640x480.Рассмотрим сначала возможность установления разрешения 640x480. Разделим 512000 байтов ( ≈ 512 Кб видеокарты) на (640x480) точек экрана. Получим, что на одну точку у нас будет приходиться и 1,67 байта. Для хранения информации о цвете одной точки обычно используется либо 4 бита, либо 8 битов (1 байт), либо 16 битов (2 байта), либо 24 бита (3 байта) — эта характеристика называется глубина цвета. В нашем случае, для хранения кода цвета будет использоваться 8 битов (так как 8 битов < 1,67 байта < 16 битов) и всего можно установить 2 =256 цветов.

Рассмотрим возможность установления разрешения 800x600. 512000 байтов/(800х600) = 1,07 байта. Значит, можно установить 256-цветный режим работы. Рассмотрим возможность установления разрешения 1024x768. 512000/(1024х768) = 0,65 байта. Значит, можно установить только 24 = 16-цветный режим работы. Если же для работы вам требуется экран с наилучшими на сегодня параметрами, то для установки фотореалистичной цветовой палитры (16 777 216 оттенков) (глубина цвета равна при этом 24 бита) и высокой разрешающей способности (1600x1280) вам потребуется: 1600x1280x24 ~ 6 Мб видеопамяти и 21-дюймовый монитор с зерном экрана не выше 0,24 или 17-дюймовый монитор с зерном экрана 0,19.

Частота кадровой развёртки (скорость регенерации экрана, частота синхронизации) — это число изображений на экране монитора, перерисовываемых лучом электронной трубки за единицу времени. Данный параметр показывает, с какой скоростью обновляется изображение на экране. Измеряется в герцах.При изменении изображения с частотой кадровой развёртки менее 50-60 Гц человеческий глаз успевает реагировать на изменение картины экрана, становится заметным мерцание экрана. При этом глаза устают, воспаляются, может появиться головная боль. Именно поэтому разработан европейский стандарт, определяющий минимальную допустимую частоту кадровой развёртки на уровне 70 Гц, а рекомендуемую — не менее 85 Гц.

Соответствие стандартам безопасности. Поскольку при работе за компьютером наибольшее внимание уделяется пользователем именно изображению на экране дисплея, а ЭЛТ-монитор, как любой телевизор, излучает электромагнитные волны во всех диапазонах — от частоты развёртки кадров (50-100 Гц) до рентгеновского, то здоровья это не добавляет. И если от телевизора можно отодвинуться, то при работе с компьютером возникают проблемы. Поэтому были разработаны мониторы с внутренним экранированием и пониженным уровнем излучения (LR — Low Radiation). Позже были приняты стандарты на допустимый уровень излучения монитора — MPR II и ТСО'92. Глазу вредят и блики — отражение от экрана постороннего света. Специальное антибликовое покрытие хороших мониторов поглощает отражённый свет. Снизить излучение и отражение можно, навесив на монитор специальный экран.

Кинескоп излучает мощные электромагнитные волны не только вперёд, но и вбок, и назад. Экран может защитить от излучений вас, но не ваших соседей по комнате. Ставьте монитор «спиной» к стене, поскольку наиболее опасной зоной в персональном компьютере являются задние панели системного блока и дисплея. И старайтесь не работать за мониторами, не соответствующими стандарту безопасности.

Название: ВИДЕОКАРТА, ВИДЕОАДАПТЕР.

Назначение. Видеокарта — это устройство, управляющее дисплеем и обеспечивающее вывод изображений на экран. Она определяет разрешающую способность дисплея и количество отображаемых цветов.

Видеокарта

Сигналы, которые получает дисплей (числа, символы, изображения и сигналы синхронизации) формируются именно видеокартой.

Возможности ПК по отображению информации определяются совокупностью (и совместимостью) технических характеристик дисплея и его видеокарты, то есть видеосистемы в целом.

Практически все современные видеокарты принадлежат к комбинированным устройствам и помимо главной своей функции — формирования видеосигналов — осуществляют ускорение выполнения графических операций. Для этого на видеокарте устанавливаются специальные процессоры, позволяющие выполнять многие операции с графическими данными без использования центрального процессора. Такие устройства называются видеоадаптерами или видеоакселераторами. Они значительно ускоряют вывод информации на экран дисплея при работе с графическими программными оболочками, трёхмерной графикой и при воспроизведении динамических изображений.

Принцип работы.

Видеокарта

Видеокарта состоит из:

·         набора микросхем (или одной интегрированной микросхемы — видеоакселератора);

·         цифроаналогового преобразователя данных, находящихся в видеопамяти, в видеосигнал;

·         видеопамяти;

·         самой платы с разъёмами.

Основные пользовательские характеристики.

В настоящее время насчитывается более 30 модификаций видеокарт, различающихся конструкцией, параметрами и стандартами. Классификация видеокарт по принятым стандартам приведена в таблице

Виды и основные пользовательские характеристики видеокарт

Название видеокарты

Название монитора

Разрешение

Объём видеопамяти

Количество отображаемых цветов

MDA — Monochrome Display Adapter

MD

720x350

64 бита - 128 Кб

2

CGA — Color Graphics Adapter

CD

640x200

128 Кб

16

HGC — Hercules Graphics Card

MD +

720x348

128 Кб

2

EGA (1984)-Enhanced Graphics Adapter

ECD

640x350

128 битов - 512Кб

16-64

VGA (1987) — Video Graphics Array

BCD

640x480

256 - 512 Кб

256

SVGA — Super VGA

BCD

800x600

256 Кб - 1 Мб

256 - 16 млн.

XGA — extended Graphics Array

ECD

1600x1200

1 - 4 Мб

16 млн.

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Конспект урока на тему «Устройства отображения информации. Дисплей (монитор), видеокарта»"

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Специалист по учету энергопотребления

Получите профессию

Менеджер по туризму

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Выбранный для просмотра документ ‚ ¦­®!.txt

Данный материал был скачан с сайта www.metod-kopilka.ru

============================================================

 

!!!!!!!!Орфография и форматирование автора материала!!!!!!!!!!

 

========================================

Образовательно-информационный ресурс для учителей информатики,

учащихся и всех-всех, кто интересуется ИТ:

http://www.metod-kopilka.ru Методическая копилка учителя информатики

 

Организационные, методические и нормативные документы,

лабораторно-практические работы (комплекс занятий по MS Word, MS Excel,

MS Access, MS PowerPaint, Paint, Move Maker и др. прикладным программам),

лекции,конспекты, дидактический материал, занимательная информатика,

экзамен, проектная деятельность, презентации.

Все в свободном доступе! Без регистрации!

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Конспект урока на тему «Устройства отображения информации. Дисплей (монитор), видеокарта»"

Получите профессию

Бухгалтер

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Получите профессию

Интернет-маркетолог

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

Название: ДИСПЛЕИ, МОНИТОР. Дисплей (анг. display — показывать) относится к основным устройствам любого ПК, без которого невозможна эффективная работа. Можно, конечно, выводить всю необходимую пользователю информацию о работе и состоянии системы на печатающее устройство (так оно и было в первых моделях ЭВМ), но это длительный и не очень наглядный процесс. Наиболее важная отличительная особенность современных компьютеров заключается в возможности почти мгновенного взаимодействия (работа в режиме реального времени) между системой и пользователем. В большинстве систем это взаимодействие осуществляется при помощи клавиатуры (и/или манипуляторов) и экрана дисплея. В процессе работы на экране дисплея отображаются как вводимые пользователем команды и данные, так и реакция системы на них. Назначение. Устройство визуального отображения информации или, более точно, устройство отображения информации, находящейся в оперативной памяти, позволяющее обеспечить взаимодействие пользователя с аппаратным и программным обеспечением компьютера. Дисплей — это важнейший компонент пользовательского интерфейса. Исторически сложилось так, что устройство отображения информации называют и дисплеем, и монитором (видеомонитором), и терминалом (видеотерминалом). Эти термины часто используются как синонимы, хотя каждое конкретное название используется, чтобы подчеркнуть, высветить требуемую особенность применения устройства. Дисплей — это общее название устройства, показывающего, отображающего информацию. Под управлением ЭВМ в качестве дисплея может работать даже бытовой телевизор. Казалось бы, проблема решена — есть устройство, позволяющее быстро отображать состояние системы. Однако оказалось, что при продолжительной работе с ним пользователь быстро устаёт: это устройство существенно влияет на работоспособность, эмоциональный настрой, самочувствие и способно даже привести к потере зрения. Возникла необходимость оптимизировать характеристики экрана, добиться более чёткого и устойчивого изображения, чтобы избежать излишней утомляемости. Были разработаны специализированные устройства — мониторы, контролирующие процесс отображения (англ. monitor — староста в классе, наблюдающий за порядком; корректирующее или управляющее устройство). Клавиатуру и монитор можно связать с компьютером как отдельные устройства или соединить их в терминал, связанный с компьютером как единое целое. Обычно терминалы используются в системах коллективного пользования, когда с одним и тем же центральным компьютером одновременно работают много пользователей. Это называется работой в режиме удаленного доступа. Принцип работы. Так как информация бывает разной, то используются разнообразные устройства отображения информации. Краткая классификация дисплеев приведена на рисунке. Отличие алфавитно-цифровых (иногда говорят «знакоместных») и графических дисплеев состоит в том, что: первые способны воспроизводить только ограниченный набор символов, причём символы могут выводиться только в определенные позиции экрана (чаще всего на экран можно вывести 24 или 25 строк по 40 или 80 символов в строке); вторые отображают как графическую, так и текстовую информацию, при этом экран разбит на множество точек (пикселей), каждая из которых может иметь тот или иной цвет. Из этих светящихся точек и формируется изображение. Монохромные устройства способны воспроизводить информацию только в каком-либо одном цвете, возможно, с различными оттенками (градациями яркости). Встречаются чёрно-белые экраны, а также зелено-желтые. Многие специалисты признают, что для длительной работы за компьютером лучше использовать монохромный дисплей: глаза при этом устают намного меньше. Цветные дисплеи обеспечивают отображение информации в нескольких оттенках цвета (от 16 оттенков до более чем 16 млн). Фактически, современные дисплеи могут отображать столько оттенков, сколько позволяет видеокарта, память которой хранит информацию о цветах точек экрана. Как образуются цвета на экране современного дисплея? Изображение состоит из отдельных зёрен экрана. Каждое зерно экрана состоит из трех пятнышек люминофора, одно из которых может светиться красным цветом (англ. Red), второе — зелёным (англ. Green), третье — синим (англ. Blue); каждое из этих пятнышек может и не светиться (быть темным). Комбинация красного и зелёного цветов дает жёлтый цвет, синего и зелёного — голубой, синего и красного — пурпурный, комбинация всех трёх цветов одной яркости дает белый цвет, отсутствие всех цветов дает чёрный цвет. Любой оттенок, различимый человеческим глазом, можно получить, «смешивая» эти три цвета в той или иной пропорции. Как такового смешения цветов не происходит — физически каждое пятнышко располагается на определенном месте. Особенность зрения человека состоит в том, что на некотором расстоянии от экрана он воспринимает близко расположенные цветовые точки различной яркости как единый элемент — пиксель. Цвет пикселя является результатом смешения в восприятии основных составляющих его цветов. Такая модель цветообразования называется RGB-моделью. Наиболее распространены дисплеи на электронно-лучевой трубке (ЭЛТ). Большинство персональных компьютеров оснащено в основном ЭЛТ-дисплеями. Они работают подобно бытовому телевизору. Под воздействием электрических полей в «электронной пушке» разгоняется поток электронов. Далее при помощи электромагнитных полей пучок отклоняется в нужную сторону. Затем, проходя через апертурную решётку, этот поток фокусируется, доходит до экрана и заставляет светиться маленькое пятнышко люминофора (зерно экрана) с яркостью, пропорциональной интенсивности пучка. Так работают монохромные устройства. В цветных мониторах зерно экрана составляют три пятнышка люминофора разного цвета (красного, зелёного и синего) и потоки электронов посылаются тремя «пушками», причём электронный луч для каждого цвета должен попадать на свой люминофор. Преимущества: современные ЭЛТ-дисплеи имеют высокое качество изображения, достаточно дёшевы и надёжны. Недостатки: такие дисплеи достаточно громоздки, потребляют много энергии, имеют более высокий уровень излучения, чем дисплеи других типов. Жидкокристаллические дисплеи (Liquid-Crystal Display), или LCD-дисплеи. Их действие основано на эффекте потери жидкими кристаллами своей прозрачности при пропускании через них электрического тока. Применяются преимущественно в портативных компьютерах (notebook). Преимущества: жидкокристаллические дисплеи не создают вредного для здоровья пользователя излучения, наиболее экономичны в потреблении энергии, обеспечивают хорошее качество изображения. Недостатки: такие дисплеи достаточно дороги, небольшие (14") размеры экрана; если смотреть на экран сбоку, то почти ничего нельзя разглядеть. Газо-плазменные дисплеи (plasma displays). Действие основано на свечении газа при пропускании через него электрического тока. Схема такова: имеются два листа, между ними инертный газ; один из листов прозрачный, а на втором расположены электроды, на которые подаётся напряжение. Обычно газо-плазменные индикаторы состоят из нескольких подобных элементарных ячеек, число точек в каждой из которых подобрано наиболее оптимальным образом для отображения одиночных символов. (Выглядит это примерно так же, как часы в метро.) Эти дисплеи применяются в основном в специализированных ЭВМ для отображения строк символов. Светодиодные матрицы (LED-дисплеи). Обычно применяются во встроенных ЭВМ (используемых в автоматизированных линиях на промышленном производстве, в робототехнике и так далее) для отображения небольших объёмов текстовой информации. Перспективная разработка — панели на основе светящихся пластмасс (LEP-панели). Чем хороши LEP-элементы? Во-первых, они светятся сами, что снижает энергопотребление. Кусочки пластика, излучающего красный, синий, зелёный свет, наносятся на гибкую пластиковую основу точно так же, как люминофор на поверхность кинескопа, к ним подводятся проводники — экран готов. Во-вторых, такие панели имеют небольшой вес при больших размерах. Например, гибкий пластиковый экран размером 1 м2 может весить несколько десятков грамм. В-третьих, LEP-элементы надёжны. На протяжении многих лет механизмы (способы) связи между компьютером и дисплеем непрерывно видоизменялись, всё более совершенствуясь. Для подключения дисплея к компьютеру необходима соответствующая карта — видеоадаптер. Основные пользовательские характеристики: Размер экрана по диагонали. Измеряется в дюймах. Имеются 14", 15", 17", 21" и др. мониторы.Следует помнить, что размер изображения, как правило, на дюйм меньше размера кинескопа. Считается, что 15" монитор отлично подходит для работы в домашних условиях; 17" монитор необходим для профессиональной работы с графикой; размеры экрана, большие 21" для персонального монитора на сегодняшний день не очень удобны для пользования, так как экран тяжело окинуть взглядом. Размер зерна экрана — расстояние в миллиметрах между двумя соседними люминофорами одного цвета. Меньший размер зерна соответствует более резкой и контрастной картинке, создавая общее впечатление чистоты цвета и чёткого контура изображения. У мониторов разного типа размер зерна экрана может находиться в пределах от 0,18 до 0,50 мм. Наиболее оптимальными для восприятия считаются мониторы с зерном экрана от 0,24 до 0,28 мм. Разрешающая способность — число пикселей (точек экрана) по горизонтали и вертикали. Эта характеристика определяет контрастность изображения. Она зависит от размера экрана и размера зерна экрана, но может изменяться (в определённых пределах) с помощью программной настройки. В таблице приведены некоторые оптимальные с точки зрения эргономики разрешающие способности при различных размерах кинескопа и зерна экрана. Взаимосвязь размера экрана, размера зерна, разрешения экрана Размер экрана Размер зерна экрана Разрешение 640x480 Разрешение 800x600 Разрешение 1024x768 Разрешение 1280x1024 Разрешение 1600x1200 14" 0,35 0,28 0,22 0,18 0,16 17" 0,43 0,34 0,27 0,22 0,19 21" 0,50 0,40 0,31 0,25 0,22 ♥ Число передаваемых цветов. Начиная со стандарта VGA, любой монитор способен отображать столько цветов, сколько обеспечивает видеокарта, вернее, объём памяти видеокарты. Пример. Монитор вашего компьютера имеет размер 14". По паспортным данным вы определили, что размер зерна экрана равен 0,24. Объём памяти видеокарты — 512 Кб. Как определить, какую разрешающую способность и какую цветность вы можете установить на своём мониторе? Определим, какое максимальное разрешение возможно. Длина диагонали экрана 14 дюймов к 14 • 2,54 • 10 мм = 355,6 мм. Длина стороны экрана: диагональ /√ 2 ≈ 250,42 мм. Максимальное количество точек по одной из размерностей определяется как отношение длины стороны экрана к размеру зерна и составляет 250,42/0,24 ≈ 1044. Таким образом, на вашем экране можно установить максимальную разрешающую способность 1024x768. Конечно же, можно установить разрешение и 800x600, и 640x480.Рассмотрим сначала возможность установления разрешения 640x480. Разделим 512000 байтов (≈ 512 Кб видеокарты) на (640x480) точек экрана. Получим, что на одну точку у нас будет приходиться и 1,67 байта. Для хранения информации о цвете одной точки обычно используется либо 4 бита, либо 8 битов (1 байт), либо 16 битов (2 байта), либо 24 бита (3 байта) — эта характеристика называется глубина цвета. В нашем случае, для хранения кода цвета будет использоваться 8 битов (так как 8 битов 1,67 байта 16 битов) и всего можно установить 2 =256 цветов. Рассмотрим возможность установления разрешения 800x600. 512000 байтов/(800х600) = 1,07 байта. Значит, можно установить 256-цветный режим работы. Рассмотрим возможность установления разрешения 1024x768. 512000/(1024х768) = 0,65 байта. Значит, можно установить только 24 = 16-цветный режим работы. Если же для работы вам требуется экран с наилучшими на сегодня параметрами, то для установки фотореалистичной цветовой палитры (16 777 216 оттенков) (глубина цвета равна при этом 24 бита) и высокой разрешающей способности (1600x1280) вам потребуется: 1600x1280x24 ~ 6 Мб видеопамяти и 21-дюймовый монитор с зерном экрана не выше 0,24 или 17-дюймовый монитор с зерном экрана 0,19. ♥ Частота кадровой развёртки (скорость регенерации экрана, частота синхронизации) — это число изображений на экране монитора, перерисовываемых лучом электронной трубки за единицу времени. Данный параметр показывает, с какой скоростью обновляется изображение на экране. Измеряется в герцах.При изменении изображения с частотой кадровой развёртки менее 50-60 Гц человеческий глаз успевает реагировать на изменение картины экрана, становится заметным мерцание экрана. При этом глаза устают, воспаляются, может появиться головная боль. Именно поэтому разработан европейский стандарт, определяющий минимальную допустимую частоту кадровой развёртки на уровне 70 Гц, а рекомендуемую — не менее 85 Гц. ♥ Соответствие стандартам безопасности. Поскольку при работе за компьютером наибольшее внимание уделяется пользователем именно изображению на экране дисплея, а ЭЛТ-монитор, как любой телевизор, излучает электромагнитные волны во всех диапазонах — от частоты развёртки кадров (50-100 Гц) до рентгеновского, то здоровья это не добавляет. И если от телевизора можно отодвинуться, то при работе с компьютером возникают проблемы. Поэтому были разработаны мониторы с внутренним экранированием и пониженным уровнем излучения (LR — Low Radiation). Позже были приняты стандарты на допустимый уровень излучения монитора — MPR II и ТСО'92. Глазу вредят и блики — отражение от экрана постороннего света. Специальное антибликовое покрытие хороших мониторов поглощает отражённый свет. Снизить излучение и отражение можно, навесив на монитор специальный экран. Кинескоп излучает мощные электромагнитные волны не только вперёд, но и вбок, и назад. Экран может защитить от излучений вас, но не ваших соседей по комнате. Ставьте монитор «спиной» к стене, поскольку наиболее опасной зоной в персональном компьютере являются задние панели системного блока и дисплея. И старайтесь не работать за мониторами, не соответствующими стандарту безопасности. Название: ВИДЕОКАРТА, ВИДЕОАДАПТЕР. Назначение. Видеокарта — это устройство, управляющее дисплеем и обеспечивающее вывод изображений на экран. Она определяет разрешающую способность дисплея и количество отображаемых цветов. Сигналы, которые получает дисплей (числа, символы, изображения и сигналы синхронизации) формируются именно видеокартой. Возможности ПК по отображению информации определяются совокупностью (и совместимостью) технических характеристик дисплея и его видеокарты, то есть видеосистемы в целом. Практически все современные видеокарты принадлежат к комбинированным устройствам и помимо главной своей функции — формирования видеосигналов — осуществляют ускорение выполнения графических операций. Для этого на видеокарте устанавливаются специальные процессоры, позволяющие выполнять многие операции с графическими данными без использования центрального процессора. Такие устройства называются видеоадаптерами или видеоакселераторами. Они значительно ускоряют вывод информации на экран дисплея при работе с графическими программными оболочками, трёхмерной графикой и при воспроизведении динамических изображений. Принцип работы. Видеокарта состоит из: набора микросхем (или одной интегрированной микросхемы — видеоакселератора); цифроаналогового преобразователя данных, находящихся в видеопамяти, в видеосигнал; видеопамяти; самой платы с разъёмами. Основные пользовательские характеристики. В настоящее время насчитывается более 30 модификаций видеокарт, различающихся конструкцией, параметрами и стандартами. Классификация видеокарт по принятым стандартам приведена в таблице Виды и основные пользовательские характеристики видеокарт Название видеокарты Название монитора Разрешение Объём видеопамяти Количество отображаемых цветов MDA — Monochrome Display Adapter MD 720x350 64 бита - 128 Кб 2 CGA — Color Graphics Adapter CD 640x200 128 Кб 16 HGC — Hercules Graphics Card MD + 720x348 128 Кб 2 EGA (1984)-Enhanced Graphics Adapter ECD 640x350 128 битов - 512Кб 16-64 VGA (1987) — Video Graphics Array BCD 640x480 256 - 512 Кб 256 SVGA — Super VGA BCD 800x600 256 Кб - 1 Мб 256 - 16 млн. XGA — extended Graphics Array ECD 1600x1200 1 - 4 Мб 16 млн. Ведение урока сопровождается демонстрацией презентации «Устройства отображения информации» с помощью мультимедийного проектора. Презентация создана в прикладной программе MS PowerPoint.

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 655 094 материала в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 10.08.2020 1336
    • ZIP 223.5 кбайт
    • 27 скачиваний
    • Оцените материал:
  • Настоящий материал опубликован пользователем Шугаибова Рукият Ибрагимхалиловна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    • На сайте: 3 года и 3 месяца
    • Подписчики: 0
    • Всего просмотров: 81683
    • Всего материалов: 233

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Няня

Няня

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Специфика преподавания информатики в начальных классах с учетом ФГОС НОО

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 39 человек из 20 регионов
  • Этот курс уже прошли 284 человека

Курс профессиональной переподготовки

Информатика: теория и методика преподавания в образовательной организации

Учитель информатики

300/600 ч.

от 7900 руб. от 3950 руб.
Подать заявку О курсе
  • Сейчас обучается 490 человек из 72 регионов
  • Этот курс уже прошли 1 517 человек

Курс повышения квалификации

Организация преподавания информационных систем и технологий в профессиональном образовании

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Этот курс уже прошли 73 человека

Мини-курс

Стратегии карьерного роста и развития

10 ч.

1180 руб. 590 руб.
Подать заявку О курсе

Мини-курс

Психологическое консультирование семей: от неблагополучия к гармонии

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 28 человек из 19 регионов
  • Этот курс уже прошли 18 человек

Мини-курс

Интегрированное управление бизнес-процессами

3 ч.

780 руб. 390 руб.
Подать заявку О курсе